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It is well known that oscillatory and chaotic behaviour are
associated with nonlinear phenomena and the corresponding
mathematical models are governed by deterministic differen-
tial equations. The differential equation models for chemical
systems are different from those for physical systems. This is
because in the latter type of models the variables may adopt
both positive and negative values while in chemistry the con-
centrations of molecular species can never be negative. In the
past few decades, much progress have been made in nonlinear
chemical dynamics. Chemical reaction systems have become
one of the favourite objects for which to study nonlinear
behaviour, both experimentally and theoretically. However,
the number of models that can be written as a set of coupled
chemical reactions and that exhibit deterministic chaos is
quite small compared to the number of models that represent
mechanical, electrical and hydrodynamic systems exhibiting
deterministic chaos. Hence, many physical chemists and
chemical physicists have tried to set up the relationship
between chemical and physical systems by means of some
mathematical transformation. There have been many meth-
ods1-9 devoted to this problem, i.e., transforming a physical
system modeled with a polynomial differential equation into a
system which can be interpreted in terms of mass action kinet-
ics. Of these methods, Samardzija’s nonlinear transformation4

is one of the most widely used methods and has been exten-
sively quoted3,5,10-17. This method succeeds in converting
some famous models such as Van der Pol, Lorenz, Rössler etc.
into mass action chemical schemes which preserve the phase
space qualitative features of the original system. The “chemi-
cal Lorenz system” produced from this method has been
extensively investigated in recent years.14-17

Chua’s circuit18 is the simplest autonomous generator of
chaotic signals and is one of the most extensively studied
chaotic circuits because of its simple circuit topology. Like the
Lorenz model19, Chua’s circuit has played a prominent role in
the modelling, investigation and understanding of new
dynamic nonlinear phenomena, especially chaotic behaviour.
Because they have rich nonlinear dynamical behaviour Chua’s
circuits can be not only used in electrical systems but also
taken as a method or a tool to study complex phenomena in
other fields such as chemistry, biochemistry, electrochemistry
and so on. The purpose of present paper is to report an attempt
in this direction, aiming to transform Chua’s circuit into a
mass action chemical system (here called “chemical Chua sys-
tem”). Chua’s circuit, also known as the Chua system, is a
canonical three-dimensional nonlinear autonomous system
which is governed by the following deterministic differential
equations:20, 21

dX/dt = α(Y – bX3 + cX)

dY/dt = β(X – Y + Z)

dZ/dt = –γ Y (1)

where α, β, γ, b, c are all positive parameters. When the para-
meters are selected as follows: α = 10, β = 1, γ = 16, b = 1, c
= 0.143, the system exhibits chaotic attractor. The X—Y pro-
jection of the attractor is illustrated in Fig. 1.

The essence of the nonlinear transformation proposed by
Samardzija et al.4 is to convert an arbitrary polynomial system
into an X-factorable structure (the concentration xi as an
explicit factor in the dxi/dt equation).This is achieved by the
following nonlinear transformation:

X = XF[X – C]

where X = [x1, …, xm]T, F[X] = [f1(X), …, fm(X)]T, X = diag(x1,
…, xm).

The Chua system (1) transformed into X-factorable form is 

dX/dt = αX[Y – θ) – b(X – φ)3 + c(X – φ)]

dY/dt = βY[(X – θ) – (Y – φ) + (Z – ω)]

dZ/dt = –γ Z(Y – ω) (2)
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Fig. 1 Deterministic chaotic attractor produced by integrating
numerically the Chua system (1). It has been projected onto
X – Y plane. The parameters are: α = 10, β = 1, γ = 16, b = 1 and
c = 0.143
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where φ, θ, ω are positive parameters. For simplicity these
parameters are chosen as the same amount. Equation (2) can
be written in the form:

dx/dt = k1xy – k2x – k3x4 + k4x3 – k5x2 + k6x2 + k7x

dy/dt = k8xy – k9y – k10y2 + k11y + k12zy

dz/dt = k13z – k14yz (2a)

According to the mass-action law, a chemical reaction mech-
anism corresponding to Eqns (2a) is shown in Table 1. When
parameters φ, θ, ω are all selected as 3000 the phase portrait
obtained from numerical integration of system (2) is given in
Fig.2 .It can be seen that the strange attractor is nicely in the
positive space and the pattern is analogous to that of the orig-
inal system (1). 

In this paper, we have converted a physical chaotic system into
a chemical chaotic system with nonlinear transformation. The
objective of this transformation is that the dynamic behaviours
of physical systems can be available to chemical kinetics.

Therefore , transforming physical systems modelled with
polynomial differential equations into mass action chemical
systems is interesting work and of significance.
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Fig. 2 Deterministic chaotic attractor obtained by integrating
numerically the chemical system(2a). The rate constants ki are:
k1 = 10, k2 = 34290, k3 = 10, k4 = 90000, k5 = 2.7 × 108, k6 = 1.43,
k7 = 2.7 × 1011, k8 = 1, k9 = 6000, k10 = 1, k11 = 3000, k12 = 1, 
k13 = 48000, k14 = 16.

Table 1

Reaction Rate

k1R1 + X + Y → 2X + Y r1 = k1xy

k2X → P1 r2 = k2x

k34X → P2 r3 = k3x4

k4R2 + 3X → 4X r4 = k4x3

k52X → P3 r5 = k5x2

k6R3 + 2X → 3X r6 = k6x2

k7R4 + X → 2X r7 = k7x

k8R5 + X + Y → X + 2Y r8 = k8xy

k9Y → P4 r9 = k9y

k102Y → P5 r10 = k10y2

k11R6 + Y → 2Y r11 = k11y

k12R1 + Y + Z → 2Y + Z r12 = k12yz

k13R8 + Z → 2Z r13 = k13z

k14Y + Z → 2Z + P6 r14 = k14yz

where ki(i = 1,2, …, 14) are rate constants. Pi(i = 1,2, … 6) refer
to unreactive products whose concentrations are assumed to
be constant. Ri(i = 1,2, …, 8) denote constant reactants whose
concentrations have been incorporated in the corresponding
rate constants. Pi and Ri are introduced only to conserve mass
in the reaction.


